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Summary. Translational symmetry has been shown to be useful in the calcula- 
tion of electronic structures of large lattice models. The number of unique 
integrals has been derived for cases of different dimensionality. For the unique 
integrals zero screening and approximation methods are described. The method 
has been applied to arrays of hydrogen atoms and to a zincblende surface model. 
When the size of the system is increased the translationally unique integrals are 
shown to become either zero or they can be calculated by simple coulombic 
approximations. 
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1. Introduction 

Ab initio Hartree-Fock calculations of chemical systems have become a useful 
tool for chemists. Due to the development of computational techniques and 
computer hardware molecules of moderate complexity can be studied and the 
accuracy of the calculated properties is in many cases comparable to the 
measurement. The main difficulty of the Hartree Fock method is the rapidly 
increasing number of electron repulsion integrals to be evaluated when the size 
of the system increases. Integral evaluation has been speeded up by various 
computational techniques [1 6] and the storage problem has been avoided by 
a direct SCF method, where the integrals are evaluated as needed in the SCF 
step [7]. 

Computational studies of solid surfaces pose particularly difficult problems. 
A good model for a surface site requires many atoms in order to reproduce the 
properties of the real system. The atoms of the solid are often heavy atoms with 
many active valence electrons leading to models where the number of basis 
functions is very large. Practical approaches to the problem are either the 
limitation of the model to a few atoms or attempt to model the surroundings of 
the site with approximate methods. There are numerous examples of such studies 
[8-12]. 
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An alternative approach to surface calculations is to use the translational 
symmetry of the solid system. This leads to a different formalism, but allows 
chemical properties to be evaluated also on surface sites. The obvious limitation 
is the restriction to periodic systems, where the asymmetric unit is repeated. This 
method has been successfully used for several solids and surface systems [13]. 
The symmetry properties of the wavefunctions of a system are determined by the 
symmetry of the Hamiltonian. In an infinite period system the symmetry can be 
accounted for with the properties of the space group of the system. In a 
nonperiodic system the symmetry properties are found from the point group, 
respectively. In cluster surface models the latter situation applies, and the 
symmetry of the system is seldom high enough to reduce the computational 
effort significantly. The symmetry properties of the electron repulsion integrals 
are not limited to the symmetry of the point group, however. In a surface cluster 
model the translational global symmetry is broken by the edges of the model or 
by an adsorbate or defect in a surface site. The great majority of the two-electron 
integrals in the periodic region of the system are still related by translational 
symmetry [14]. Despite its obvious advantages, the translational symmetry of the 
integrals has not been exploited in molecular orbital studies of clusters until 
recently. Head and Dillon have reported "pseudo-lattice symmetry" calculations, 
where the unique integrals are identified by lattice displacement vectors [15]. 

In the present work we report another method for the identification of the 
translationally unique integrals. We also demonstrate how the computational 
effort of the unique set can be further reduced by error bound and coulombic 
approximation techniques. 

2. Theory 

The starting point of the study is a cluster of atoms cut from a solid with 
maintaining the geometry of the bulk. Surface relaxations and site perturbations 
may be introduced, but we begin with the ideal case. 

The aim of our approach is to provide simple rules for the identification of 
the translationally unique integrals. Integrals, related by the point group symme- 
try are not considered, since standard methods can be used. The rules for the 
cases of 1D-, 2D-, and 3D-symmetry are: (the proofs can be found in [14]) 

I) Chain Translationally unique integrals have at least one basis function on the 
end atom of the chain. 

II) Sheet Translationally unique integrals have at least one basis function on two 
adjacent edges of the sheet. 

III) Parallelpiped ABC Translationally unique integrals have at least one basis 
function on the three adjacent faces (A, B, and C) of the parallelepiped. 

The present method of classification applies to any system with translational 
symmetry, since the translation unit is not restricted to a basis function or an 
atom. The lattice spacings in a, b, and c directions as well as the angles of the 
lattice vectors are arbitrary. The point group symmetry of the system may be 
used to relate translationally unique integrals. The method is also not restriced to 
three dimensions, and in fact there are several cases where considerations of 
higher dimensions can be useful. If in a solid there are subunits with internal 
translational symmetry and uniform orientation, higher dimensions of transla- 
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tion can be assigned for the subunit. An example of such a system is a diamond 
lattice with two f c c  lattices are displaced from each other by one quarter of the 
body diagonal. A translation along the fourth dimension transforms one f c c  
lattice to another. 

The number of translationally unique integrals in a general three-dimensional 
case is: 

+ Q[ijkm] 

- Q[i j (k  - 1)m] - Q [ i ( j  - 1)km] - Q[(i - 1)jkm] 

+ Q [ i ( j  - 1)(k - 1)m] + Q[(i - 1)j(k - 1)m] + Q[(i - 1)(j - 1)km] 

- Q [ ( i  - 1 ) ( j  - 1 ) ( k  - 1 ) m ]  ( 1 )  

where Q[n] = {[n(n + 1)/2][n(n + 1)/2+ 1]}/2 and m is the number of basis 
functions in the translational unit, i, j, and k are the maximum numbers of 
translations to a, b, and c directions. 

An illustration of translational symmetry relationships can be seen in Table 
1, where the number of integrals for different systems of one basis function 
atoms are given. 

2.1 Proper t ies  o f  the s y m m e t r y  unique integrals  

Thus far it has been assumed that all of the symmetry unique integrals are 
calculated and stored. The translationally unique integrals may be divided into 
classes which have interesting properties: As the number of the translational 
units increases the new integrals are either small or easy to approximate. The 
case of the chain illustrates this classification. If  the integrals for a chain of n 
atoms have been evaluated, the number of additional translationally unique 
integrals for a chain of n + 1 atoms is p = Q[nm] - 2Q[(n - 1)m] + Q[(n - 2)m], 
where p increases rapidly. All p integrals have a common feature, namely, of the 
i'our basis functions in the integral <ijkl>: 

< i j k l ) =  i(1)j(1) - -  k(2)l(2) (2) 
r~2 

there is at least one basis function on each end of the chain. When these two 
functions belong to the same particle the integral diminishes rapidly with the 
increasing distance because of the small overlap and the short range nature of 
the exchange interactions. For example, letting i and j denote basis functions on 
opposite ends of the chain, the integral <ijkl> is small irrespective of the location 
of k and l since: 

< 1 > < 1 >½< 1 >½ 
6 - -  k l  ~< g - -  0 k l  - -  k l  (3 )  

r12 ri2 r12 

where the ~j exchange integral is small. In the other case, when the end atom 
basis functions belong to different particles (e.g. i(1)k(2) with i and k on the 
opposite ends of the chain), integrals can be significant in magnitude, but only if 
they are of coulombic type. If the electron repulsion integral is considered as an 
interaction of two charge clouds defined by basis functions i, j ,  k ,  and l in an 
integral belonging to the translationally unique set p with large n either one of 
the two charges is very small since its basis function are in the ends of the chain 
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or both charges are localized in the opposite ends of the chain. This feature gives 
possibilities to prescreen zero integrals from the calculation and approximate 
coulombic integrals with multipole approximations. In summary, on increasing 
the chain length, the number of nonnegligible new integrals is much smaller than 
given by the formula for p, and the integrals are primarily of long range 
coulombic type. The short-range interaction integrals do not proliferate with the 
increasing size of the system, if translational symmetry is used. Since this type of 
integral is the most difficult to calculate, symmetry recognition complements 
other evaluation procedures. 

3. Computational techniques 

The use of the translational symmetry in ab initio Hartree-Fock calculations is 
rather straightforward. Symmetry can be used for one-electron and two-electron 
integrals by implementing the principles described above. The principle can be 
also extended to valence calculations, where symmetry is used in the core-valence 
and valence integrals [ 16]. It is useful to prescreen the two-electron integrals with 
the exchange integral test in order to avoid the accurate computation of the zero 
integrals. 

An option to exclude atoms from the SCF step was built to the program for 
systems where the desired model is a subset of a translationally ideal system. 

In the SCF part all nonzero integrals are regenerated for the construction of 
the Fock matrix. Since the number of integrals to be stored is relatively small, 
they can be kept in the main memory. 

3.1 MonopoIe approximation 

A simple monopole approximation for the long-range coulombic integrals was 
tested as well. The charge densities of the integrals were approximated by point 
charges and the magnitude of the integral was computed from Coulombs law. A 
practical way to use the monopole approximation is to study pairs of charge 
distributions. At certain distance the monopole approximation becomes accurate 
enough. Once this limit is found all integrals with the same charge distributions 
but with longer distance can be approximated. 

4. Numerical applications 

4.1 Array of hydrogen atoms 

4.1.1 One-dimensional array. The simplest case to demonstrate the use of trans- 
lational symmetry is a linear array of one basis function atoms. The atoms were 
chosen hydrogens and the basis is a standard five component lobe basis. The 
distance of adjacent atoms is 1.5 a.u. (78 pro), where the atoms are within a 
bonding distance. The model simulates metal lattices where the basis functions 
overlap extensively neighboring centers. 

The first system considered was a chain of 900 hydrogens. In this 900 basis 
function system there are 8.22 x 101° two electron integrals of which 3.64 x 108 
are symmetry unique according to (I) as shown in Table 1. This is about 0.4% 
of the total two-electron integrals. 
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Fig. 1. Number of unique 
nonzero and exact 
two-electron integrals as 
the function of the size of 
the hydrogen chain. 
Integral rejection threshold 
if 10 7 
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Fig. 2. Percentage of the 
unique and nonzero 
unique two-electron 
integrals of total. Chain of 
hydrogen atoms. Integral 
rejection threshold is 10 .7 

Further and a more dramatic decrease in the integrals can be obtained by 
using the exchange bound (3). When the threshold is 10 -7 only 50203 integrals 
remains to be computed. A majority of  these integrals can be computed by the 
monopole approximation, leaving only 974 integrals for the full evaluation. 
These integrals have been already encountered within the chain length of 65 
atoms. The number of  integrals vs. number of  basis functions is shown in Fig. 1. 

A closer inspection of the shorter chain lengths shows the importance of the 
exchange error bound. In Fig. 2 the percentage of translationally unique and 
nonzero integrals of  total are shown. At the chain length of 13 atoms 50% of the 
translationally unique integrals are zero, and at 31 atoms the corresponding 
proport ion is 90%. 

The definition of zero integral was studied by varying the criteria of rejecting 
integrals as zero. Figure 3 shows how the percentage of the zero integrals out of  
the translationally unique set varies as the function of the chain length. An order 
of  magnitude change in the criteria shifts the curve to the left by about  2 
"atoms".  A more noticeable effect is seen if the distance of the lattice atoms is 
increased. In Fig. 4 there are three cases, namely 1.5 a.u., 1.75 a.u., and 2.0 a.u. 
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Fig. 4. Percentage of the 
zero integrals out of the 
translational unique set. 
Chain of hydrogen atoms. 
Influence of the bond 
length. Integral rejection 
threshold is 10 -7 

The same shape of the curve is again reproduced, but now the shift is towards 
shorter chain lengths as expected. 

For practical computational purposes we have shown that the exact integrals 
for chains of any length can be easily computed, and for the remaining 
coulombic integrals can be calculated with the simple monopole formula. 

4.1.2 Two- and three-dimensional arrays. The computational effort increases 
considerably when two and three-dimensional systems are studied. The main 
reason is the high concentration of atoms in a small space, where there the 
overlaps of the basis functions remain large. The translational symmetry is also 
quite as useful as in the chain case. As a two-dimensional case an orthogonal 
slab of 30 x 30 hydrogen atoms was computed. According to Table 1 the 900 
(30 x 30) basis functions generate 8.22 x 10 l° two electron integrals. The number 
of symmetry unique integrals is now 1.32 x 109, which is about 1.6% of the total. 
This is about four times more than in the chain case. Number of unique nonzero 
integrals is 6.11 x 106 which is about 0.01% of the total. Monopole approxima- 
tion can be used for 92% of these leaving 482528 integrals for a full calculation. 
Figure 5 shows the dependence of the integrals on the number of basis functions. 
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The nonzero integrals depend almost linearly and the "exact" integrals level off 
approaching a constant number as in the chain case. 

A three-dimenisonal system comprising 10 x 10 x 10 atoms was also consid- 
ered. As shown in Table 1 the 1000 basis functions produce 1.25 x 10 n integrals 
of which 5.10 x 109 (4%) are symmetry unique and 3.83 x 108 (0.3%) are 
nonzero. Of the latter 89% can be approximated by the monopole approxima- 
tion leaving 4.2 x 107 integrals for full evaluation. Figure 6 shows again the 
almost linear dependence of the integrals on the number of basis functions. The 
amount of integrals demanding full calculation is again growing slowly and 
approaching a constant as in the previous cases. 

In order to compare results of  different dimensionality the number of basis 
functions wag chosen as the common x-axis. In Fig. 7 the percentage of the 
unique and unique nonzero integrals of total is shown. The figure indicates that 
the proportion of the translationally unique and nonzero integrals decreases 
much faster in the cases of lower dimensionality. 

If the size of the system is considered as the variable the proportion of the 
zero integrals within the symmetry unique set starts to dominate faster in higher 
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dimensions. About  50% of the integrals become zero at the slab size of  8 x 8 and 
90% are zero when the size is 13 x 13. 

In the three-dimensional case the 50% proport ion of nonzero integrals is at 
6 x 6 x 6, and the 90% proport ion is at model size 9 x 9 x 9, as compared to the 
respective chain results of  13 and 31. 

4.2 Zinc sulfide surface model 

As a test of  a real lattice system zinc sulfide surface was chosen. The surface 
properties of  II  VI compounds are of  considerable practical interest in view of 
their electrical and electro-optical properties [ 16-18]. In the present work only the 
computat ional  aspects of  the surface models are considered, the electronic 
structures will be reported separately. The models represent the (111) surface of 
zincblende (Fig. 10). The ab initio calculations were limited to the valence region 
of the system, the influence of the atomic cores were taken into account by the 
stepwise approximation method based on density matrix expansions [8, 9, 16]. 

In zinc sulfide the translational symmetry was used as follows: ZnS unit was 
chosen to be the translational unit, which was transferred along two vectors which 
are in a 120 ° angle (Fig. 8). Minimal basis was chosen, since it has been shown 
to reproduce the surface properties of  the system at least qualitative-ly [ 17]. The 
core and valence integrals were computed using translational symmetry. 

The results for the valence integrals of  surface models up to Znm0Sm0 are 
shown in Table 2 and in Fig. 9. The largest 10 x 10 model has 500 s- and p-basis 

<.<..<..~...<..~.<..<.<..< 
<..< <..<. ,, 

w < .< . , ,  

1 2 8 4 

Fig. 8. Two-dimensional zinc sulfide (ZnxooSloo) 
model. Models of 1 x 1, 2 x 2, 3 x 3, and 4 x 4 zinc 
sulfide units are indicated 
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functions, which generate 7.84 x 109 two electron integrals of which 9.26 x 108 
are translationally unique (11.8%). The number of nonzero integrals is 
4.45 x 106 which is only 0.1% of the total. Coulombic approximation reduces the 
number of exact integral further to 1.2 x 106. As a function of the basis the 
number of integrals increases linearly as in the hydrogen case (Fig. 10). 90% of 
the translationally unique integrals are zero at the system size of 5 x 5. In the 
hydrogen case the same level was found for model size 15 x 15. This shows the 
power of the method in a real application with more than one basis function in 
the translational unit. In the zinc sulfide case the lattice is more open and the 
basis functions do not overlap as well as in the hydrogen case, which represents 
a tightly packed metallic case. The power of translational symmetry is less in the 
cases of many basis functions in the translational unit and high dimensionality 
but the exchange bound and the monopole approximation gives a more favor- 
able overall reduction in the computational task. 

5. Conclusions 

Translational symmetry together with integral approximations has been shown 
to be an efficient approach for ab initio studies of large lattice models. The 



296 T.A.  Pakkanen and J. Muilu 

n u m b e r  o f  u n i q u e  n o n z e r o  in tegra l s  f o r m  on ly  a smal l  f r ac t ion  o f  the  to t a l  
in tegrals .  L a r g e  la t t ice  m o d e l s  a l l ow  s tudies  o f  loca l  p rope r t i e s  vs. m o d e l  size, 
wh ich  has  been  a top ic  o f  ex tens ive  d i scuss ions  in the  l i te ra ture .  
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